On the (parameterized) complexity of recognizing well-covered (r, `)-graphs
نویسندگان
چکیده
An (r, `)-partition of a graph G is a partition of its vertex set into r independent sets and ` cliques. A graph is (r, `) if it admits an (r, `)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is (r, `)-well-covered if it is both (r, `) and well-covered. In this paper we consider two different decision problems. In the (r, `)-Well-Covered Graph problem ((r, `)wcg for short), we are given a graph G, and the question is whether G is an (r, `)-well-covered graph. In the Well-Covered (r, `)-Graph problem (wc(r, `)g for short), we are given an (r, `)-graph G together with an (r, `)-partition of V (G) into r independent sets and ` cliques, and the question is whether G is well-covered. We classify most of these problems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only the cases wc(r, 0)g for r ≥ 3 remain open. In addition, we consider the parameterized complexity of these problems for several choices of parameters, such as the size α of a maximum independent set of the input graph, its neighborhood diversity, or the number ` of cliques in an (r, `)-partition. In particular, we show that the parameterized problem of deciding whether a general graph is well-covered parameterized by α can be reduced to the wc(0, `)g problem parameterized by `, and we prove that this latter problem is in XP but does not admit polynomial kernels unless coNP ⊆ NP/poly.
منابع مشابه
On the (Parameterized) Complexity of Recognizing Well-Covered (r, l)-graphs
An (r, `)-partition of a graph G is a partition of its vertex set into r independent sets and ` cliques. A graph is (r, `) if it admits an (r, `)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is (r, `)-well-covered if it is both (r, `) and well-covered. In this paper we consider two different decision problems. In the (r, `)-Well-Covered Graph prob...
متن کاملUnmixed $r$-partite graphs
Unmixed bipartite graphs have been characterized by Ravindra and Villarreal independently. Our aim in this paper is to characterize unmixed $r$-partite graphs under a certain condition, which is a generalization of Villarreal's theorem on bipartite graphs. Also, we give some examples and counterexamples in relevance to this subject.
متن کاملLinear Recognition of Almost Interval Graphs
Give a graph class G and a nonnegative integer k, we use G+kv, G+ke, and G−ke to denote the classes of graphs that can be obtained from some graph in G by adding k vertices, adding k edges, and deleting k edges, respectively. They are called almost (unit) interval graphs if G is the class of (unit) interval graphs. Almost (unit) interval graphs are well motivated from computational biology, whe...
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملParameterized Algorithms on Perfect Graphs for deletion to (r, ℓ)-graphs
For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be partitioned into r independent sets and ` cliques. Such a graph is also said to have cochromatic number r + `. The class of (r, `) graphs generalizes r-colourable graphs (when ` = 0) and hence not surprisingly, determining whether a given graph is an (r, `)-graph is NP-hard even when r ≥ 3 or ` ≥ 3 i...
متن کامل